Quick Clicker Question:

Solve $x^2 + 1 = 0$.

(A) Silly, you can't do that!
(B) $x = 1$
(C) $x = -1$
(D) $x = \sqrt{-1}$
Quick Clicker Question:

Question: Solve $x^2 + 1 = 0$
Quick Clicker Question:

Question: Solve $x^2 + 1 = 0$

1. (A) Silly, you can’t do that!
Quick Clicker Question:

Question: Solve $x^2 + 1 = 0$

1. (A) Silly, you can’t do that!
2. (B) $x = 1$
3. (C) $x = -1$
4. (D) $x = \sqrt{-1}$
Quick Clicker Question:

Question: Solve $x^2 + 1 = 0$

1. (A) Silly, you can’t do that!
2. (B) $x = 1$
3. (C) $x = -1$
Quick Clicker Question:

Question: Solve $x^2 + 1 = 0$

1. (A) Silly, you can’t do that!
2. (B) $x = 1$
3. (C) $x = -1$
4. (D) $x = \sqrt{-1}$
Quick Clicker Question:

Question: Solve $x^2 + 1 = 0$

5. (A) Silly, you can’t do that!
6. (B) $x = 1$
7. (C) $x = -1$
8. (D) $x = \sqrt{-1}$
When the fisherman, let's call him Jeremy, comes in with many fish, that is good. When Jeremy comes in with not many fish, that is not good. Jeremy likes good. His evening with his wife and extended family is MUCH nicer after a good catch. Thus began the branch of philosophy called goodosophy (or ethics)! But Jeremy is also credited with fathering the branch of philosophy that is today called mathematics...
Counting Fish

So when the fisherman, let’s call him Jeremy, comes in with many fish, that is *good*.
Counting Fish

So when the fisherman, let’s call him Jeremy, comes in with many fish, that is *good*.

When Jeremy comes in with not many fish, that is *not* good.
Counting Fish

So when the fisherman, let’s call him Jeremy, comes in with many fish, that is *good*.

When Jeremy comes in with not many fish, that is *not* good.

Jeremy likes good. His evening with his wife and (extended) family is *MUCH* nicer after a *good* catch.
Counting Fish

So when the fisherman, let’s call him Jeremy, comes in with many fish, that is *good*.

When Jeremy comes in with not many fish, that is *not* good.

Jeremy likes good. His evening with his wife and (extended) family is *MUCH* nicer after a *good* catch.

Thus began the branch of philosophy called *goodosophy* (or ethics)!
Counting Fish

So when the fisherman, let’s call him Jeremy, comes in with many fish, that is *good*.

When Jeremy comes in with not many fish, that is *not* good.

Jeremy likes good. His evening with his wife and (extended) family is *MUCH* nicer after a *good* catch.

Thus began the branch of philosophy called *goodosophy* (or ethics)!

But Jeremy is also credited with fathering the branch of philosophy that is today called *mathematics*...
1 fish, 2 fish,
Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.

Hence, the counting numbers!

1, 2, 3, 4, 5, 6, 7, 8, 9,...

Two things here:

First, Jeremy and his kin didn't yet have Arabic numerals (didn't even count in base 10?).

Second, much later in India, the idea of 0...
1 fish, 2 fish, fish, fish ...

Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.
1 fish, 2 fish, fish, fish ...

Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.

Hence, the counting numbers!
1 fish, 2 fish, fish, fish ...

Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.

Hence, the counting numbers!

1,2,3,4,5,6,7,8,9,...
1 fish, 2 fish, fish, fish ...

Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.

Hence, the counting numbers!

1,2,3,4,5,6,7,8,9,...

Two things here:
1 fish, 2 fish, fish, fish ...

Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.

Hence, the counting numbers!

1, 2, 3, 4, 5, 6, 7, 8, 9,...

Two things here: First, Jeremy and his kin didn’t yet have arabic numerals (didn’t even count in base 10?).
1 fish, 2 fish, fish, fish ...

Jeremy, being a fisherman of deep thought, realized he could count his catch and fish longer if he needed, in order to have a good evening.

Hence, the counting numbers!

1, 2, 3, 4, 5, 6, 7, 8, 9,...

Two things here: First, Jeremy and his kin didn’t yet have arabic numerals (didn’t even count in base 10?). Second, much later in India, the idea of 0...
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.

But if customers do not get what they want, that is not good.
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is **good**.

But if customers do not get what they want, that is **not** good.

Sophie realized that 2 customers arguing over the last fish could both be made happy by cutting it in half (lengthwise, of course, and charging a bit more for the effort (thereby employing her son-in-law)).
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.

But if customers do not get what they want, that is not good.

Sophie realized that 2 customers arguing over the last fish could both be made happy by cutting it in half (lengthwise, of course, and charging a bit more for the effort (thereby employing her son-in-law)).

Hence, the ratios!, the rations!!, the rational numbers!!!
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.

But if customers do not get what they want, that is not good.

Sophie realized that 2 customers arguing over the last fish could both be made happy by cutting it in half (lengthwise, of course, and charging a bit more for the effort (thereby employing her son-in-law)).

Hence, the ratios!, the rations!!, the rational numbers!!!

1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, ...
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.

But if customers do not get what they want, that is not good.

Sophie realized that 2 customers arguing over the last fish could both be made happy by cutting it in half (lengthwise, of course, and charging a bit more for the effort (thereby employing her son-in-law)).

Hence, the ratios! the ratios!! the rational numbers!!!

1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, ...

Fortunately, this is also the birth of the
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.

But if customers do not get what they want, that is not good.

Sophie realized that 2 customers arguing over the last fish could both be made happy by cutting it in half (lengthwise, of course, and charging a bit more for the effort (thereby employing her son-in-law)).

Hence, the ratios!, the rations!!, the rational numbers!!!

1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, ...

Fortunately, this is also the birth of the mathematics teacher!
Now Jeremy’s great, great, ..., granddaughter, Sophie, is a merchant of deep thought.

If she makes her customers happy, that is good.

But if customers do not get what they want, that is not good.

Sophie realized that 2 customers arguing over the last fish could both be made happy by cutting it in half (lengthwise, of course, and charging a bit more for the effort (thereby employing her son-in-law)).

Hence, the ratios!, the rations!!, the rational numbers!!!

1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, ...

Fortunately, this is also the birth of the mathematics teacher!

... for why else would anyone need to solve $3x = 17$ for x, when there is a butcher around?
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought.
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

\[
\text{If she can “balance the books”, that is good.}
\]

\[
\text{If she cannot account for all acreage, that is not good.}
\]

Sophia knows that the area of a square with side \(s \) is \(\text{area} = s^2 \).

To balance the books, she needs to find \(s \) ? Hence, the square root.

\[
\begin{align*}
\text{area} & = 1, \\
\text{area} & = 4, \\
\text{area} & = 9, \\
\text{area} & = 16, \\
\text{area} & = 25, \\
\text{area} & = 36, \ldots
\end{align*}
\]
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

If she can “balance the books”, that is good.
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

If she can “balance the books”, that is good.

If she cannot account for all acreage, that is not good.
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

If she can “balance the books”, that is good.

If she cannot account for all acreage, that is not good.

Sophia knows that the area of a square with side s is $a = s^2$. But she is only given a.
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

If she can “balance the books”, that is good.

If she cannot account for all acreage, that is not good.

Sophia knows that the area of a square with side s is $a = s^2$. But she is only given a. To balance the books, she needs to find s?
Sophie’s great, great, ..., granddaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

If she can “balance the books”, that is good.

If she cannot account for all acreage, that is not good.

Sophia knows that the area of a square with side s is $a = s^2$. But she is only given a. To balance the books, she needs to find s?

Hence, the square root.
Sophie’s great, great, ..., grandaughter, Sophia, is a tax collector of deep thought. Taxes are collected based on land usage. But land is often bought, sold, and divided among heirs...

If she can “balance the books”, that is good.

If she cannot account for all acreage, that is not good.

Sophia knows that the area of a square with side s is $a = s^2$. But she is only given a. To balance the books, she needs to find s?

Hence, the square root.

$s^2 = 1, \ s^2 = 4, \ s^2 = 9, \ s^2 = 16, \ s^2 = 25, \ s^2 = 36,...$
But what about \(s^2 = 2 \)? (or \(s^2 = 3 \), or \(s^2 = 5 \), etc)?
But what about $s^2 = 2$? (or $s^2 = 3$, or $s^2 = 5$, etc)?

Maybe Sophia was a Pythagorean.
But what about $s^2 = 2$? (or $s^2 = 3$, or $s^2 = 5$, etc)?

Maybe Sophia was a Pythagorean. If so, she became a traitor!
But what about \(s^2 = 2 \)? (or \(s^2 = 3 \), or \(s^2 = 5 \), etc)?

Maybe Sophia was a Pythagorean. If so, she became a traitor!

Because she showed that if \(s^2 = 2 \), then \(s \) cannot be a ratio!
But what about \(s^2 = 2 \)? (or \(s^2 = 3 \), or \(s^2 = 5 \), etc)?

Maybe Sophia was a Pythagorean. If so, she became a traitor!

Because she showed that if \(s^2 = 2 \), then \(s \) cannot be a ratio!

Hence, (the algebraic and then) the real numbers!
But what about $s^2 = 2$? (or $s^2 = 3$, or $s^2 = 5$, etc)?

Maybe Sophia was a Pythagorean. If so, she became a traitor!

Because she showed that if $s^2 = 2$, then s cannot be a ratio!

Hence, (the algebraic and then) the real numbers!

Well, Sophia’s great, great, ..., grandson, Chuck is sitting in a math class and he got the problem “find x: $x^2 + 1 = 0$” wrong.
But what about $s^2 = 2$? (or $s^2 = 3$, or $s^2 = 5$, etc)?

Maybe Sophia was a Pythagorean. If so, she became a traitor!

Because she showed that if $s^2 = 2$, then s cannot be a ratio!

Hence, (the algebraic and then) the real numbers!

Well, Sophia’s great, great, ..., grandson, Chuck is sitting in a math class and he got the problem “find x: $x^2 + 1 = 0$” wrong.

He said $x = \sqrt{-1}$.
But what about $s^2 = 2$? (or $s^2 = 3$, or $s^2 = 5$, etc)?

Maybe Sophia was a Pythagorean. If so, she became a traitor!

Because she showed that if $s^2 = 2$, then s cannot be a ratio!

Hence, (the algebraic and then) the real numbers!

Well, Sophia’s great, great, ..., grandson, Chuck is sitting in a math class and he got the problem “find x: $x^2 + 1 = 0$” wrong.

He said $x = \sqrt{-1}$. And he is pissed because his teacher (who seems to like his girlfriend!) whacked his knuckles for getting it “wrong”...