Quick Clicker Questions:

Question 1: Is the set of even counting numbers smaller than the set of all counting numbers?
Quick Clicker Questions:

Question 1: Is the set of even counting numbers smaller than the set of all counting numbers?
(A) Yes (B) No.
Quick Clicker Questions:

Question 1: Is the set of even counting numbers smaller than the set of all counting numbers?
(A) Yes (B) No.
Counting

When we count, we pair off the things we want to count with the counting numbers:

(a,1), (b,2), (c,3), ... (z,26)

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or cardinality of sets.

The size of a set of things is simply the number of things:

\{a, b, c, \ldots, z\}

has 26 elements:

|\{a, b, c, \ldots, z\}| = 26

So what is |\{9\}|?
Counting

When we count, we pair off the things we want to count with the counting numbers:

\[(a,1), (b,2), (c,3), \ldots, (z,26)\]

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or cardinality of sets. The size of a set of things is simply the number of things:

\[\{a, b, c, \ldots, z\}\]

has 26 elements:

\[|\{a, b, c, \ldots, z\}| = 26\]
Counting

When we count, we pair off the things we want to count with the counting numbers:

(a,1), (b,2), (c,3), ... (z,26)
Counting

When we count, we pair off the things we want to count with the counting numbers:

(a,1), (b,2), (c,3), ... (z,26)

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or *cardinality* of sets.
Counting

When we count, we pair off the things we want to count with the counting numbers:

(a,1), (b,2), (c,3), ... (z,26)

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or *cardinality* of sets.

The size of a set of things is simply the number of things:
Counting

When we count, we pair off the things we want to count with the counting numbers:

\[(a,1), (b,2), (c,3), \ldots (z,26)\]

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or \textit{cardinality} of sets.

The size of a set of things is simply the number of things:

\[\{a, b, c, \ldots, z\}\] has 26 elements:
Counting

When we count, we pair off the things we want to count with the counting numbers:

\[(a, 1), (b, 2), (c, 3), \ldots (z, 26)\]

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or \textit{cardinality} of sets.

The size of a set of things is simply the number of things:

\[\{a, b, c, \ldots, z\}\] has 26 elements:

\[|\{a, b, c, \ldots, z\}| = 26\]
Counting

When we count, we pair off the things we want to count with the counting numbers:

\((a,1), (b,2), (c,3), \ldots (z,26)\)

It is this association between the counting numbers and the objects we want to count that gives us our first notion of size, or \textit{cardinality} of sets.

The size of a set of things is simply the number of things:

\(\{a, b, c, \ldots, z\}\) has 26 elements:

\(|\{a, b, c, \ldots, z\}| = 26\)

So what is \(|\{9^9\}| \)?
The counting numbers are just symbols for the idea they represent. \{\} is the set with no elements, the empty set. It has cardinality 0: \(|\{}\| = 0\).

\{\}\ is the set containing only the empty set. It has cardinality 1: \(|\{\}\| = 1\).

\{\},\ {{}\} contains the empty set and the set containing the empty set. It has cardinality 2: \(|\{\},\ {{}\}\| = 2\).
(a, I), (b, II), (c, III), (d, IV), (e, V), (f, VI) ...

The counting numbers are just symbols for the idea they represent.
The counting numbers are just symbols for the idea they represent.

\{\} is the set with no elements, the *empty set*. It has cardinality 0:

\[|\{}| = 0 \]
The counting numbers are just symbols for the idea they represent.

\{\}\ is the set with no elements, the *empty set*. It has cardinality 0:
\[|\{}| = 0\]

\{ \{\} \}\ is the set containing only the empty set. It has cardinality 1:
\[|\{ \{}\}| = 1\]
The counting numbers are just symbols for the idea they represent.

\{\} is the set with no elements, the *empty set*. It has cardinality 0:

\[|\{\}| = 0 \]

\{ \{\} \} is the set containing only the empty set. It has cardinality 1:

\[|\{ \{\} \}| = 1 \]

\{ \{\}, \{ \{\} \} \} contains the empty set and the set containing the empty set. It has cardinality 2:

\[|\{ \{\}, \{ \{\} \} \}| = 2 \]
\{\{\}, \{\{\}\}\}, \{\{\}, \{\{\}\}\}\} \text{contains the empty set, the set containing the empty set, and the set containing the empty set and the set containing the empty set. It has cardinality 3:}

\[|\{\{\}, \{\{\}\}\}, \{\{\}, \{\{\}\}\}\}| = 3\]
\{ \{ \}, \{ \{ \} \}, \{ \{ \}, \{ \{ \} \} \} \} contains the empty set, the set containing the empty set, and the set containing the empty set and the set containing the empty set. It has cardinality 3:

\[|\{ \{ \}, \{ \{ \} \}, \{ \{ \}, \{ \{ \} \} \} \}| = 3 \]

Want to do 4?
\{ \{\}, \{\{\}\}, \{\{\}, \{\{\}\}\}\}\} contains the empty set, the set containing the empty set, and the set containing the empty set and the set containing the empty set.

It has cardinality 3:

$$|\{\{\}, \{\{\}\}, \{\{\}, \{\{\}\}\}\}| = 3$$

Want to do 4?

What about counting the counting numbers?
\{\{\},\{\{\}\}\},\{\{\},\{\{\}\}\}\} contains the empty set, the set containing the empty set, and the set containing the empty set and the set containing the empty set.

It has cardinality 3:

\[|\{\{\},\{\{\}\}\},\{\{\},\{\{\}\}\}\}| = 3\]

Want to do 4?

What about counting the counting numbers?

Let’s pair them off:

(1,1), (2,2), (3,3), ..., (n,n), ...
\{ \{\}, \{\{\}\}\}, \{\{\}, \{\{\}\}\}\} \text{ contains the empty set, the set containing the empty set, and the set containing the empty set and the set containing the empty set.}

It has cardinality 3:

\[|\{ \{\}, \{\{\}\}\}, \{\{\}, \{\{\}\}\}\}| = 3 \]

Want to do 4?

What about counting the counting numbers?

Let’s pair them off:
(1,1), (2,2), (3,3), ..., (n,n), ...

Does this end?
\{ \{\}, \{\{\}\}, \{\{\}, \{\{\}\}\}\}\) contains the empty set, the set containing the empty set, and the set containing the empty set and the set containing the empty set. It has cardinality 3:

\[|\{\{\}, \{\{\}\}, \{\{\}, \{\{\}\}\}\}| = 3\]

Want to do 4?

What about counting the counting numbers?

Let’s pair them off:
(1,1), (2,2), (3,3), ..., (n,n), ...

Does this end?

We say that a set is finite if this pairing off does end.
Counting

What if we lost the number 1?

Is \{2, 3, 4, \ldots\} smaller than \{1, 2, 3, 4, \ldots\}?

Let's count: (1,2), (2,3), (3,4), ...

\[
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\downarrow & \downarrow \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]

We have each counting number associated with exactly one other number and none are missed!

If it helps, we can write down the association:

\[n \rightarrow n + 1. \]
Counting

What if we lost the number 1?
Counting

What if we lost the number 1?

Is \(\{2, 3, 4, \ldots\} \) smaller than \(\{1, 2, 3, 4, \ldots\} \)?
Counting

What if we lost the number 1?

Is \(\{2, 3, 4, \ldots\} \) smaller than \(\{1, 2, 3, 4, \ldots\} \)?

Let’s count: \((1,2), (2,3), (3,4), \ldots\)
Counting

What if we lost the number 1?

Is \{2, 3, 4, \ldots\} smaller than \{1, 2, 3, 4, \ldots\}?

Let’s count: (1,2), (2,3), (3,4), ...

\[
\begin{align*}
1 & \rightarrow 2 \\
2 & \rightarrow 3 \\
\vdots & \vdots \\
2 & \rightarrow 3 \\
\end{align*}
\]

\[
\begin{align*}
1 & \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ \ldots
\end{align*}
\]
Counting

What if we lost the number 1?

Is \(\{2, 3, 4, \ldots\} \) smaller than \(\{1, 2, 3, 4, \ldots\} \)?

Let’s count: \((1,2), (2,3), (3,4), \ldots\)

\[
\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \ldots \\
\downarrow & \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & \ldots \\
\end{array}
\]

We have each counting number associated with exactly one other number and none are missed!
Counting

What if we lost the number 1?

Is \{2, 3, 4, \ldots\} smaller than \{1, 2, 3, 4, \ldots\}?

Let’s count: (1,2), (2,3), (3,4), ...

\[
\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \ldots \\
\downarrow & \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & \ldots \\
\end{array}
\]

We have each counting number associated with exactly one other number and none are missed!

If it helps, we can write down the association: \(n \rightarrow n + 1 \).
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in one-to-one correspondence. If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set.

Now for the real definition of cardinality: Two sets have the same cardinality if there is a one-to-one correspondence between (all of) the elements of the sets. We don't need infinity to be a number (today), but let's say that infinity is a cardinality. If a set is finite, then its cardinality is the number of elements it contains.
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental!
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in *one-to-one correspondence*. If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set.

Now for the real definition of cardinality: Two sets have the same cardinality if there is a one-to-one correspondence between (all of) the elements of the sets. We don’t need infinity to be a number (today), but let’s say that infinity is a cardinality. If a set is finite, then its cardinality is the number of elements it contains.
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in *one-to-one correspondence*.

If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set.

If a set is finite, then its cardinality is the number of elements it contains.

Infinity is a cardinality.
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in *one-to-one correspondence*.

If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set. Now for the real definition of cardinality:
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in *one-to-one correspondence*.

If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set. Now for the real definition of cardinality:

Two sets have the same cardinality if there is a one-to-one correspondence between (all of) the elements of the sets.
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in *one-to-one correspondence*.

If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set. Now for the real definition of cardinality:

Two sets have the same cardinality if there is a one-to-one correspondence between (all of) the elements of the sets.

We don’t need infinity to be a number (today), but let’s say that infinity *is* a cardinality.
Cardinality

This idea of associating with each counting number exactly one element of a set is fundamental! We say the sets are in *one-to-one correspondence*.

If we have a one-to-one correspondence between some set and the counting numbers then we can count the elements of the set. Now for the real definition of cardinality:

Two sets have the same cardinality if there is a one-to-one correspondence between (all of) the elements of the sets.

We don’t need infinity to be a number (today), but let’s say that infinity *is* a cardinality.

If a set is finite, then its cardinality is the number of elements it contains.
The 1-1 correspondence $n \rightarrow n + 1$ showed that $\{2, 3, 4, \ldots\}$ has the same cardinality as the natural numbers: in this sense they are the same size.
The 1-1 correspondence $n \rightarrow n + 1$ showed that \{2, 3, 4, \ldots\} has the same cardinality as the natural numbers: in this sense they are the same size.

So removing a single integer doesn’t change the size of the natural numbers...
The 1-1 correspondence $n \rightarrow n + 1$ showed that $\{2, 3, 4, \ldots\}$ has the same cardinality as the natural numbers: in this sense they are the same size.

So removing a single integer doesn’t change the size of the natural numbers...

What about removing half of them?
The $1\,-\,1$ correspondence $n \rightarrow n + 1$ showed that $\{2, 3, 4, \ldots\}$ has the same cardinality as the natural numbers: in this sense they are the same size.

So removing a single integer doesn’t change the size of the natural numbers...

What about removing half of them?

What is the cardinality of the even counting numbers?
The 1-1 correspondence $n \rightarrow n + 1$ showed that \{2, 3, 4, \ldots\} has the same cardinality as the natural numbers: in this sense they are the same size.

So removing a single integer doesn’t change the size of the natural numbers...

What about removing half of them?

What is the cardinality of the even counting numbers?

\[n \rightarrow 2n \]
The 1-1 correspondence $n \rightarrow n + 1$ showed that \{2, 3, 4, \ldots\} has the same cardinality as the natural numbers: in this sense they are the same size.

So removing a single integer doesn’t change the size of the natural numbers...

What about removing half of them?

What is the cardinality of the even counting numbers?

$$n \rightarrow 2n$$

1 2 3 4 5 6 7 8 9 10 11 ...
\downarrow
2 4 6 8 10 12 14 16 18 20 22 ...
Hilbert’s Hotel
Hilbert’s Hotel

Where we are always full...
Hilbert’s Hotel

Where we are always full...

... and we always have rooms available!
<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>...</td>
</tr>
</tbody>
</table>

...
And this one-to-one correspondence tells us that the fractions (the rational numbers) are countable:

Cardinality of natural numbers = Cardinality of rational numbers
And this one-to-one correspondence tells us that the fractions (the rational numbers) are countable:
And this one-to-one correspondence tells us that the fractions (the **rational numbers**) are countable:

Cardinality of natural numbers = Cardinality of rational numbers